Enhancing
CP/M-80

by William F. Dudley

[

Add A Command
History Function

S

Imagine that you are working at your CP/M system and
you type the following command: -

Mopip lst: + some.fil,another.fif,andmore. fil[i8p]
and instead of hearing the printer start, you get:

INVALID PiP FORMAT: -+ SOME.FIL ANOTHER FIL ANDMORE.FIL{TGP]

A
Wouldn't it be nice to get that last ine back to correct the typo? It’s
30 tedious retyping the whole line again just for one small mis-
take.
Or imagine you are debugging a C program. Edit-Compile-
Assemble-Link-Run-See errors. Edit-Compile-Assemble-
Link-Run-See errors. Etc, etc. etc. ad nauseam.

It would be less tedious if you didn’t have to retype the same
five commands over and over again. (Even using a submit file, ¥
still count three commands repeated endlessly.) Somebody must
have thought of this before.

Well, campers, they did. Several big name operating systems
have a command kstory feature:)

a. Berkeley Unix. The cshell is several years old and it
allows execution and editing of commands executed earlier. I find
its syntax painful, however.

b. VMS 4.x. When Digital Equipment Corp. upgraded
VMS, they added command history. They only allow access to the
last twenty commands, which is sufficient for most needs. I think
the editing characters are somewhat arbitrarily chosen, (unless
you have a VT-100 terminal, where the arrow keys wotk).

c. AT&TUNIX V. A new shell for AT&T UNIX is called
K-shell (Korn authored it). I find K-shell’s command history very
nice. It allows you to choose your command editor to Jook like
either emacs or vi, both very popular editors on UNIX machines.
It keeps the command history in a file, and stores many more than
1 need.

HOW DOES CP/M COMMAND HISTORY WORK?

To be useful for-a CP/M environment, I worked up these
reguirerments:

a. The command history is kept in (banked) ram to keep the
speed to access commands high. I didn’t want to slow down an
already slow machine.

b. Sparse but useful feature set so that code size would fit
within a standard CP/M system size. 1 still wanted to be able to
use SYSGEN to make a bootable single-sided single-density 8"
disk.

- 28

¢. Use editor commands of an editor I was familiar with. I
would have liked to use vi, but requirement (b} above dictated
emacs, which was easier to implement.

d. Some trick featres of the public domain CCP I was using
had to be sacrificed to make room for history. These, plus other
little used features and commands that history needed, are ot
could be supported by transient programs.

The resulting history feature works in the following manner.
When faced with the CP/M prompt:

B

you can type in a command just as before; however, the command
line editing characters have changed and expanded:

"H desiructive hackspace (delete lefl)
DEL destructive backspace (delete leff)
~\I discard and erase entire fing
~X discard and erase entire line
~B non-destructive move cursor feft
"F non-destructive move cursor right
~ A move cursor to beginning of ling
~E move cursor to end of line
*D delete character under cursos (+ ciose up line)
“L toggle printer staved to console
*C warm boot CP/M if typed as first char on line
~ M (carriage retum) execute fine
~J (Hine feed) execute Hne
~p discard command buffer, fatch previcus command
~N discard command buffer, feich “next” command (not implemented)

Qtherwise: insert the char info the command line. f not at the end of the
command, do a real insert (i.e. move characters to the right over to
make room.) Control characters not listed above are echoed just as
CP/M used 1o {8.g. cirl-Y i3 echoed *Y).
So now, fixing the command line offered at the beginning of the
article would look like this:
Abpip Ist; -+ some.fil,another fil,andmore. fit{t8p]
INVALID PIP FORMAT: -+ SOME.FIL ANGTHER.FILANDMORE FIL{TEP]
AP
Aypip Ist: + some.fil another.fit,andmere.fil[t8p]

Move the cursor to the “+” character. Use " A to go to the begin-
ning of the line. Type eight (8) “ F’s to move right to the “ -+ . Type
~D to delete the “~+*. Your cursor is under the “s” in some, and
the line now looks like this:

Aypip Ist:some.fil another fil, andmore filft8p]

Type an “=" to insert it in front of the “some”. Type a {cr)

: {carriage return) to execute the line.

Ajpip lst: = some.fil, another.fi, andmore.fil[t8p]

To make the edit-compile-run loop a little easier, ‘you now need
type the commands only once each:

Aedit foo.c

editing. . .
Aysusbimit e foo.e

compiler uns . . .
Afao

fooruns . . .

Micko/Systems Journak. SEPTEMBER/OCTORER 1986

Now, to re-edit, just type three (3) "P’s:

AP

AYoo P

A)submit c¢ foo.c" P

Medit foo.e{er) ‘
From now on, you need type only three “P’s to recover the next
commang in the cycle.
Some Transient Pro, + Three transient programs are used to
support history. INITHIST.COM clears the history buffer to the
empty state. This is unnecessary, but nice. If you "P back to
before you started the current session, the garbage in the history
buffer can make a small mess on your CRT screen.

GETHIST.COM copies the history buffer to the CP/M tran-
sient area so it can be saved with the CP/M SAVE command. This
command is good for debugging the history feature, but mainly
used with:

PUTHIST.COM to ellow keeping the history buffer on disk
from one session to the next. This way, you need type a command
only once, ever, ever, ever. (Well, almost).

SYSTEM REQUIREMENTS

The code presented here can be used with litfle change on
CP/M 2.2 systems using a Z80 or 64180 CPU. [use a 64180, so
the memory management instructions reflect that. However, these
can be easily changed to accomodate a typical Z80 bank select
SYSICI.

’ The second requirement is some free ram that CP/M doesn’t
use. This can be (as in my system) another 64K bank, or in the
simplest instance, just a couple of pages of ram above the BIOS.

A third requirement is an assembler, and some cxperience
SYSGEN'ing CP/M systems. I use SLR180 by SLR Systems in
Pennsylvania. Microsoft’s M80 and L80 can be used just as well.

WHAT PARTS OF THE 0.S. ARE MODIFIED?

Hold onto your hats. This job is most cleanly done by mod-
ifying both the CCP and the BDOS. Yes, Isaid BDOS, but its not
as bad as it sounds. Honestly.

In order to shoehomn alt this code into a nearly stock CP/M
system, I had to scrap the BDOS system call 0AH, Get Line from
CON:. The history line editor replaces this code completely, and
there was no sense in wasting the ram occupied by the line editor
built into the BDOS. There are two approaches to the BDOS mod:
the patch and the gung-ho version. More about this later.

The actuzl command history buffer management is handled by
the modified CCP. I have bezn using an old public domain CCP
replacement for years, (like ZCPR1 or something). I gutted out
somte functions in it that T never used to make room for the history
buffer management code.

INSTALLING THE CODE

Modifying the BDOS: The BDOS change is the first to go in, and
gives you a good command line editor right away, without fixing
the CCP.

1 disassembled my BDOS, and then made room by changing
most of the absolute jumps to relative jumps. Whien I then excised
the. existing Get Line function code, I had just enough room for
the new line editor (Listing 1). I also needed to add a second entry
point for the getliné function, to allow editing of aline already in the
line buffer. I stole the unused CP/M function 26H. This function
has mever been used, in CPM 2.2, CPM 3.0 (Plus), or even
MS-DOS (which copied CP/M’s BDOS function calls.)

Public domain disassemblers are available to disassemble
the BDOS, or you can buy the product advertised as a source code
generator for CP/M and do it automatically.

If disassembling the BDOS seems like too much wark, the
other way is to patch the BDOS to call an external routine that you
Tocate in high ram above the BIOS. This could be loaded at cold
boot time or kept in a BIOS rom that is resident at all times.

Micro/SysTEMS JOURNAL SEPTEMBER/OCTORER 1986

To facilitate the patch technique, some useful locations in a
standard CP/M 2.2 BDOS are shown in Listing 2.

Modifying the CCP: First, you need the source to your CCP,
either the disasserabled Digital Research CCP, or one of the pub-
lic domain CCP replacements. I use an old public domain CCP.
(It’s so old, it doesn’t have wheel bytes or named directories).

Next, you need to decide which features you will sacrifice to
make room for the history code. I tock out LIST (TYPE to printer)
since I always use PIP for that, and JUMP (to start execution at an
arbitrary memory location) since I use DDT if I need something
like that.

Now the code in Listing 3 can be merged with your CCP
source. It fits in just after the cods to print the CP/M prompt “)”,
and replaces the code from there until the code to convert the com-
mand line to upper case.

As an aside, I also ddded code to toggle on/off the lower to
upper case conversion of command lines. This allows you to use
the PIP Start and Quit flags with lower case strings.

The only hardware dependent parts of the code are the pointers
to where the history buffer is kept in memory. If you have a 64180
and more than 64K, then the code will run as supplied. I keep a
copy of the CCP and BDOS from 10000H to 115FFH for warm
boots from ram. The history buffer is kept from 11600H to
12000H. Subroutines BANK(and BANK1 do what you’d expect,
respectively disabling and enabling the memory from 10000H to
1CFFFH. When enabled, that memory resides at logical
addresses 0000H to OCFFFH.

H you have only 64K of ram, another possibility is to con-
figure your system size to 60K, which will leave some ram above
the BIOS that CP/M doesn’t know about. The history buffer can be
kept there just as well.

After you have made your decisions concerning history buffer
location, modify your source code and get it to assemble without
errors. Then make up a new system with DDT:

A)SYSGEN

SYSGEN VER 2.0

SOURGE DRIVE NAME {OR RETURN TO SKIP)A

SOURCE ON A, THEN TYPE RETURN

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)cr)

AYSAVE 38 CPM.GOM

ADDT CPM.COM

INEWCCP HEX

JIoffsef]

NEWBDOSHEX

.r[%ﬂset]

AYSAVE 38 NEWCPM.COM

AYSYSGEN NEWCPM.COM

SYSGEN VER 2.0

DESTINATION DRIVE NAME {OR RETURN TO REBOOT)B
DESTINATION ON B, THEN TYPE RETURN
DESTINATION DRIVE NAME (OR RETURN TQ REBOCT)(cr)

Now the moment of truth. If you pow reset and cold boot off
your pew system track {on the B diskette in this case) and get the
A) prompt, congratulations. If “DIR” still works, a standing ova-
tion. If “ P{cr) does a DIR again, then it’s ticker tape parade time.

For the test of you, I would suggest putting the BDOS mod in
without changing the CCP right away. Everything should still
woark like a box-stock CP/M system, without history, but with a
really fine command line editor facility.

Once the new BDQS (of BDOS patch) is in, the new CCP can
go in. In order to help debugging the CCP mods for history, you
may want to put in the transient programs GETHIST, PUTHIST,
and INITHIST. (Listings 4, 5, and 6).

Another debugging trick for this is to temporarily put the
history buffer into ordinary transient arca ram, say at 8000H. This
will allow you to examine the history buffer with DDT without
having to worry about the complication of dealing with banked ram
with DDT. .

29

HOW IT WORKS

GETLINE function: The line editor in the BDOS foilows closely
the model of the original Digital Research code. Relative jumps are
used to keep the code size down (they are slower than absolute
jumps but speed is unimportant here). Some cleverness was
required to make the routines for deleting and inserting characters
- work properly on any CRT with backspace the only cursor
positioning sequence allowed. The temptation to use CRT escape
sequences was immense, but the fact that I own two radically dif-
ferent CRT’s forced me to do it right.

Backspaces are used to move the cursor left. To move the
cursor right, the characters on the line are retyped. To erase,
spaces are output, and then backspaces used to recover the cursor
position.

The normal entry point, BDOS function 0AH. works as
- before, that is, the line buffer is cleared before the first character is
gotten from the console in routine.

The second entry point, BDOS function 26H, (formerly un-
used) prints the current contents of the line buffer on the CRT,
leaving the cursor at the end of the line, and then goes for an input
character.

The CCP needs to know how thé line was terminated, forif a

carriage return or kne feed was typed, the line is to be executed. If -

however, a “ P or *N was typed, the line in the buffer is to be dis-
carded and the previous or next line in the bistory buffer is to be
fetched.

Eor this reason, BDOS function OAH and the new function

26H now return the last character typed to the caller in the
Accumulator {(and the L register). CP/M applications that don’t
need this information are unaffected since the accumulator is ex-
pected to be clobbered by the BDOS call.
CCP History Function: When the CCP is first entered, it calls
CP/M function 0AH to get a command line. I the call returns with a
value of carriage return or linefeed, the command in the buffer is to
be executed. When a command is executed by the CCP, it is first
put into the history buffer. The history buffer is designed as a
combination fifo (first in first out) buffer and a doubly linked list.
The exact layout is as follows:

chuff: dw lenth ;pointer to previous command length byle
lenOk: db fen0 lengiiv of first command

comp: ds fen0 first cominand

lenGt: db Jend tength of first command

lenth: db lenl length of second command

comd: gs lenl first command

lenit db fent ;length of second command

To copy a command into the history buffer, first the existing com-
mands in the buffer are moved up in the buffer to make room at the
input end. The new command is then copied into the buffer begin-
ning, with a byte representing its length at each end of the com-
mand copy in the buffer. Finally, the previous command buffer
pointer is reset to point to the most recent command in the buffer.

The copying of the latest command into the history buffer is
done so that the history buffer never expands beyond its defined
limits, The limits must be on page boundartes.

When the CCP gets a return value of " P from the BDOS getline
call, it goes to the fifo for the previous command. The command
pointer is always pointing to the length byte for the previous com-
mand in the history buffers. That command is copied to the CCP
command line buffer, and the previous command pointer is in-
cremented by the length byte plus two so that it points to the next
command back in the fifo (back in time).

The CCP now calls BDOS function 26H to edit the command
which is in the command line buffer. Then, depending on the return
value, the CCP either saves and executes the command, or fetches
the previous command for editing again.

30

BUGS & NOTES

The only known bug is that command lines with embedded
control characters are displayed incorrectly when editing. This
means that when editing those lines, it is necessary to keep the
real cursor position in your head. Another way is 1o always move
using “A and “F’s, so that the line characters will be echoed
properly. I wanted to use the code, and not be debugging it for the
rest of my life, so T decided to just use the code this way. If anyone
fixes this bug, I'd like a copy of the fix.

The “N command to get to the next command in the history
baffer was not implemented due to lack of space in the CCP. 1f you
overshoot the command you want with an extra " P, the only way to
recover is to send an empty line with a carriage return to the CCP,
which will reset the command pointer to the beginning of the
buffer.

VMS is a trademark of Digital Equipment Corp.
MR0, 180, and MSDOS are trademarks of Microsoft.
SLR180 is a trademark of SLR Systems.

Bill Dudley is a Member of Technical Staff ar. AT&T Beil Lab-
oratories in New Jersey, where he designs hardware for Cellular
Mobile Telephone Service. He has a BSEE and M.Eng. from
Cornell University. When not hacking his CPIM system or justify-
ing why he hasn’t got an MS-DOG system yet, he can be found rid-
ing his motoreycle. .

Listing 1
GETLIN.MAC
bdos getlin replacemen

t
en point to allow editing of line already
in the buffer.

William F. Dudley

Nt e et NE N NN R

Dec. 22, 1985
whoot0 egu 0
if equ 16
cr equ 13
bs equ 8 delete previous char
ctrlb equ 2 semacs back char <~
ctrlf eq 6 jemacs fwd char -
ctrln equ Och ;emacs next line

; (returns to caller if typed)
ctrla equ 1 semacs begin line <<
ctrll equ Och jecho to 1st: (replaces “p}
ctrip e 10h ;emacs prev line .
: (returns to caller if typed)

ctrle eq 5 jemacs end of line ==
ctrlk equ Obh ;emacs erase to eol
ctrld equ | 4 semacs delete char
ctrle equ 3
ctrlx e 18h
ctrln equ 15h
del e 7fh

;<<< system call > buffer input from console

buffer format: T0X 11 ,C,CyCyCorea
me= size of buffer
= § of characters entered
, €= characters
special characters:

H
H
¥
; rub/del = remove and echo last character
3 ctrla = emacs mowe cursor to beginning of line
; ctrlb = emacs move cursor left one character
; ctrlc = reboots system if typed at start of input
; ctrld = emacs delete character under cursor :
] ctrle = emacs move cursor to end of line
H ctrlf = emacs move curscr right one character
: ctrth = remove and do crt rubout
H ctrlj = (line feed) end of input
H ctrlm = (return) erd of input
; ctrll = toggle list device slave
H ctrlu = scratch input buffer after new line
3 ctrlx = scratch input buffer & back up to
i start of line
codela: 1d hl,{userde) ;hl= buffet pointer

1d g, (hi) ;= size of the buffer.

inc hi

hi ;save pointer to # of characters
b,0 iclear character counter
la a,{curcol) ;get current column position
jr canent jcoman entry point

Micro/Systems JoURNAL SEPTEMBER/QCTOBER 1986

g

P

codelé:

e ppee 1

14 hl,(userde) rhl= buffer pointer
1d ¢, {nl) ;o= size of the buffer
inc hi - i
push hi ;save pointer to # of characters
1d b, (hl) ibeno. of chars in buffer already
14 g;é (curcol)
push be . .
call tline ;erint the line .
Fop bc ° ;restore buffer size, line length
pop af srestore cursor position after prompt
coment: (ool) oo 'e it
colsavi,a sav R
14 d,n - ’ scursor position = end of line
codlaa: push ssave the character count
push hl rsave the buffer pointer
codlab: call conch ;get a character from console
and gfh ;strip parity
13- e,a scurrent char to e
Pop hl srestore buffer pointer
op be ;restore character count
c cr .
jlr; Z,aqgvec $if end of input
cp ctrlp . .
his z,avec ;if end of input
cp ctrln .
jr 2, &vec ;if end of input
f -
agvec: ?1"3 z,codl2q 7if end of input
g? Z,kckspe
cp .
jr nz,delchk 1if ot delete
shere for back space
bekspe: 1d 2,4 sa= character count
or a)
jr Z,3avec ;if buffer empty, forget it
call bspee
push h
push de
moviin: inc d
ine h
h - e
ad a,b .
sub da :no of chars to the right of cursor
14 b,a
push be

Sh hl » r3
; print E?ne to end of line amitting current char
call tline

c. ar
call ﬁhaz
fp b

bc
inc b

inc b
¢ backspace up to original position minus 1
i call bepe

bslp:
P Sz beip
Fop be
la ab
or a
iz z,bekext
1d c,b
14 b,0
14 d,h
14 e,l
inc h
7 move chalags ‘in buffer to close up gap
ir
bokext: pop bc
s i
Pop
pp bl
aavec: . jp codlaa .
delchk: cp ctrld ; gz
ir nz, fwd
d a,b
cp d
jr z,aavec jcursor is after last char in buffer
push n
de
Jjr movlin
fwd: cp ctrlf E?
ir nz,eclchk
d a,b
sub d
gr Z,8avec
id a1
hid foward rend of line check will occur there
eolchk: cp ctrle ie?
ir nz,back
d a,b
sub d

MICRO/SYSTEMS JOURNAL SEPTEMBER/OCTOBER 1986

; print {move)

'a' chars forward

foward: 1d e,a
add 4
1d d,a
gush be
4a b,e
call tline
pp b
Jr aavec N
back: cp ctrlb 1 b?
jr nz,beglin ;nope
1d e,l :1 char to backup
jr backup
beglin: cp ctrla :ta ?
i[nz,eraeol snope '
4 e, ;no of chars to backup
; backup e char's)
backup: 14 a,d
or a
jr Z,8avec ;at beginning, forget it
sh bc
backlp: call gspoc'e
p: C
dinz backlp
®p bc
jr aavec
eraeol: cp ctrlk Tk ?
jr nz,tglist
14 a,
sub 4 o of chars to erase
jr %, aavec ;at end, ignore
d b,d
push be
14 b,a
14 a, {curcol)
push af
push hl ;save so current hl is final hl
: print chars to move cursor o erd of line
call tline
[E
d a,{curcol)
14 [colavl) ,a
W%
d {curcoli} ,a
: now go rubout back over the stuff to be erased
jr codlal
tglist:
cp ctrll .
3j nz,cod0af sif not 71 X
shere to toggle the list slave
gush hl save hl-reg "
é hl,Jlistsw spoint to list slave switch
14 a,l ;toggle it
sub (hl)
14 {hl} ,a
op hi srestore hl-reg
Jr aavec ;loop
codlaf:s cp ctrlx .
ir z,clrlin jyes, X%
cp ctrlu .
je nz,codlan sno, not "u .
shere for crt line clear
clelin: EOP hl ;clean stack
codfag: 14 a, (colsav) :chack print column position
13 hl,curcol ;against cursor position
cp (hl) jand:
P nc,codela +if end of rubout, start over
ec (hl) jelse dec column position count
¢all rubout jdo the crt rubout ‘
jr codlag ;loop £ill entire entry cleared
codfal: ch hl :retyﬁe done, .
4 a,(colsvi) scheck print column
or a ;dup if at begimning
r z,abves
d hl,curcol
sub hi
14 {colsvl) ,a
codlam: call rubout
14 hl,calsvl
dec (hi}
r nz,cod0am
abvec: Jp cod0ab
secho character to console
codlan: call patcon
14 a,b
jr z,eolchr ;last char in line, no move needed
push b
Eush de .
d b,a sno of chars to print
la c,a ;save in ¢ for later
push be
call I:1;.1c:'.n¢e
it hl ;save buffer pointer to end
irbklp: call bspee sback up fram end of line to

: insert position

an

djnz t‘:I;lnbklr.v
fgp 4,h shl points to end of buffer now
14 e,l
inc de
iddr smowe rest of line out one char
pop de
: plgoe character in buffer
eolchr: in¢
inc d
inc hl sbump buffer pointer
(hl} ,e sinstall character
1d a, (hl} -get the previous character
cg ctrle
! a,b ;a= count
nz,codlap -1f not abort
cp 1 -check for first character
ip z,wbooto :if first character
codlap: cp
ip c codfaa 1if ot et end of buffer
; here on end of inpu't .
codlag: EOP hi srestore tmmter to count
4a {hl) b -return count in buffer
1d c,Cr ;send a return and exit
call pchar
14 a,e i

ip
bepec-print a backspace, 2 if current char is control char
bspc -ggint a backspace

e

dec -]
14 a' '-1
cp (k1)
dec hl ;doesn't affect flags
ret c snot contrel char, only one
. : screen position
bspc: 13 e,bs
; print char in gc register
putcon: push
I h Bl
call c,gr O]
COTl
PP E-cl:
be

Fet
ref

; print chars from current cursor position to end of line
tline: 1d ab

or a
ret z
tlinel: inc n
1d €,(hi)
call pukeon
dinz tl:mel
ret

jend mede'g if code is to be assembled as standalone patch
=

¥

Listing 2
; useful locations in the bdos
1 referenced to_the BDOS start

,whch:.sfom‘rd in locations 6 and 7
, on *normal” origin 0 CP/M systems

codeﬂap equ bdos + 05BH
ecode2bp equ bdos + 0938
codeth equ bdos + 47H
colsav equ bdos + 030BH
colsvl egu bxdos + 30RH
curcol equ bdos + 030Ch
geonch edqu bdos + OFBH
listsw equ bdos + 30DH
pchar equ bdos + 1480
pchrcon equ bdes + 17FH
retaf equ bdos 4+ 3018
rubout equ © IFR
userde equ bdos + 243H
userhl equ bdos + 345H
whootl equ
Listing 3
Alin title 'enhanced 280 ccp for 2.x 3/18/82°
;W
bDec. 06, 1985 modxfxed for last command memory.

CYECE TS

equates
include listing.4a sglobal equates for history

e Wy

TNE THESE FOR YOUR SYSTEM SIZE .
ccploc equ 0d400h ;start of ccp in memory

;I had to put CCP's stack sbove my BIOS to make room for code

histk equ OF7FRH ;tune this as your system allows

; STOP TUNING HERE

ctrlp em 16h spreviovs command lme

ctrln equ Qeh -prevmus comang 1

supres eg true ress user O prompt {true)

sprmpt edqu '=! Eﬁ grcmpt character

cprmpt equ "> -keyboar prampt character

defusr equ 0 ;default user # {com files)

maxusr equ smaximum user number

biosiz equ 380h ‘blOS ‘Size (gét protection)
equ ,cp/m warm boot address

udflag eq 4 ;user mmber in high nybble,

-dlsk in low
tbuff equ 80h -default disk i/o puffer
tEch -default fcb buffer

equ Sch
'} macro to use 64180 output instruction
; replace out® references with normal ZSD out
5 instruction if us:mg a Z80 cpu

out0 macro Eo
db edh,3%h,port
endm

char ' equ Obsh ;64180 common bank register
eqn 0bsSh ;64180 hese bank register

input coromand line from uset console -

rbl- call subkil erase $$§.sub iE present
¢all setud :set user
13 a,cprmpt jprink '>' prompt
call copout
14 c,0ah ;read (possibly cld) command line

: from user
from HERE on is neat new stuff

rcmd $ -1 ;allows changing of getlin entry point .
igu de mbuff
call bdos - -
push af
call bankl
B
cp ctrlp
I‘r- nz,newcnd
d o (hdptr)
okl 4
14 a,(hl)
cp buflen
15- c,rb2’ + command is legal buffer length
a,buflen
th2: %g de,cbuff ; dest will be ccp buff.er (mbuff + 1)
1 c,a
inc ¢ ; add 1 for length byte
1dir ; hl row points to end length byte
izéc glh ¢ skip length byte
4 ¢
T DR, hl points past hist b
] 1 H nts past hist buffer end
L g Points e
ar ne,pchk2 i+ hl doesn't point below hist
+ buffer beginni SIg
pchkl: 148 hl ,cbuffo ;pazg:agerﬂi?’fg hstb wrap to
: : inn
pchk2: 14 {hdptr} Kl
call
14 a,26h
14 {remdy,a jpatch so cpm line editor invoked
vrstrt: ip restrt
newamd: ' '
ia a, {ebuff)
1d 9%
1 ol buffer length + length byte
inc c ; er length + leng
. o § P oty cndlen byte
inc c ; or trailing en
14 hi,bbugfl ©
or a
sbe hl,.be
%sh hl : § of chars in histbuf to move
hl,hbuffe
pash n- ; destinatin
she hi,be + Source
op de r dest —> de -
Egg be - : ¢ to move —> bc
r
14 de,cbuffd ; dest is start of hxst buffer
14 hY,chuff - ; source wf buffer
Pop be + get command
push de : gave start of h:.st buffer
sh be ; Save comnand 1
ir 3 copy command to. 1st buffer
rop bc : ?Et commiand leng
ex - e, ; hl—>end of cxarmarﬂ in hist buffer
dec ¢
14 {H1) ,c

; put at end of buffer image in hbuff

Micro/SYSTEMS JOURNAL SEPTEMBER/OCTOBER 1986 -

I

fcp hl ; get start of hist buffer
d (hdptr) ,hl; put in hist buffer pointer

call bank0
1d a,0zh
. .14 {remd) ,a ;unpateh so normal cpm getlin invoked
3 cepitalize string (ending 1n U} in chift
crnvbuf: 14 M, chuff :pt to user's command
1d b,{hl} ;char count in b
inc b : 41 to cover 0 case
cbl: ine hl next char
14 a,{hl} ;get character
ucasev equ $+ 1 ;allows patching out ucase call
call ucase ;force upper case
1 (hl),a jstore character
djnz cbl 180 rest of commang line
1a {hl) ,b ;store ending <null> (b=0)
14 bl,cibuff ;set omd ptr to lst char
1d (cibptr},hl |
., et
; This ret needs to be ahead of ucase for CASE to work
s convert char in a to upper case
ucase: c<p ‘at ;less than lower case a?
ret c ;Yes
cp 'z'+1 ;greater than lower-case z?
ret nc 1yes R
reﬁ 5,a sno, clear lower case bit
re
; form: cage
case: ex (sp) ,ix ;put exit address on stack
casflg egu $+1 , .
1 a,n soverwritten, initialized to ucase
;3 mode .
xQr 1
14 (casflqg) ,a
14 a,low(ucase)
14 b,*1*
it z,caspat
ec & ;points to the return before ucase
dec b ;is a ‘0" now
caspat: 1é {ucasev) ,a
13 a,lf
call conocut
1d a,b

ip conout jrestart cop without login
: make the secord bank active

bankl: 1d a,i0h j;second 64k bank
4ir obbr

; make the first bank active

bankfl: xor a

obbr: outd tbr
ret

Listing 4

title ‘get history buffer into save image’
gethist.mac

to use: .
A>gethist
A>save 13 histname.ext

for 280 with simple bank select: write to port 0 to
change bank

1 to port 0 => normal ram from 0000 to 7fffh

2 to port 0 —> second bank from 0000 to 1tffh

P IR TR TR TR TR TR

include listing.da j;global includes for history
! aseg
org tpa
; copy real program up to NONBNK above bank selected memory.
14 hl mstart
14 de ,nonbnk
14 be, pend-pstart
ldir
potart

mstart:
.phase nonbnk.
; phase pseudo-0p causes asserbler to generate
: code for different run location than load address

pstart: A .

14 a,bank2 sswitch in second bank

out (bank) ,a

1d hY,hbutf

14 de,empty jcopy history buffer to unbarnked
; ram above this code

1a bc, houffl

1dir

1d a,bankl jswitch back to first bank

out {bank} ,a .

14 hl , empty

14 de,tpabuf ;eopy buffer image down to low
+ memory for CP/M SAVE command

14, be, hbuffl

1dir

ret ;return to cpm without warm boot

Micro/SysTEMS JOURNAL SEPTEMBER/OCTOBER 1986

thbuffe equ 2000h

pend:

empty: ds 1
.dephasé

) end

Listing 4a

; listing,4a == global equates for history
: these should be tuned for your system hardware,
; particularly the history buffer location

hbuff egqu 1600h
hdptr equ hbuff
cbuff0 equ

;pointer to current hbuff line

;contents is length of most
; recent command

;last location of history

: buffer + 1

hbhuffl equ hbuffe - hbuff ;length of history buffer
bank edqu @ ;bank register

bank2 equ 2

bankl ecu 1

nonbnk equ 8000h ;start of non-banked memory
: STOP TUNING

tab equ 0%h “shorizontal tab

if e Dah 1line feed

f£ equ Och ;form feed

cr equ 0dh ;carriage return

false equ 0

true equ not false

whoot equ 0 ;ep/m warm boot address

rdigk in low

}'xlos, equ 5 ;bdos function entry point
tpa eqa 108h sbase of tpa
tpabuf equ tpa + 100h

Listing 5

title ‘'pot history buffer from save image’
puthist.mac

to use:
A>get 100 histname.ext
A>puthist

or if using CCP without GET command
A>ddt histnam,com

- C
A>puthist

PR LR R

for z80 with simple bank select .
include listing.da ;global equates for history

3

aseq
org pa
: move real program to high memory sbove bank selected ram
1d hl mstart
14 de ,nonbnk
1d be, pend-pstart
ldir
i pstart
mstart:
.phase nonbnk
pstart:
14 de ,empty
: move hist buffer imzge to high ram sbove bank selected ram
13 hl,tpiuf
id be hbuffl
1dir
1a a,bank2 ;select the second bank
out (bank).,a
3 move h:itgt buffer image to proper place in banked ram
hbu
ia nl yempty
14, b, hbuffl
ldir
14 a,bankl ste-select the first bank
out {bank) ,a
ret
; return to CB/M COCP without re-booting
pend:
empty: ds 1
.dephase
’
end
Listing 6
title ‘clear history buffer'
+ inithist.mac
;
; to uses

continued on page 85

33

